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ABSTRACT: 

 

Cross-median crashes (CMCs), in which a vehicle crosses the highway median, are one of the most severe 

crashes due to high speeds and risk of collision with an opposing vehicle.  This paper describes the 

ordinal discrete-choice modeling efforts for investigating the nexus between the severity propensity and 
miscellaneous variables pertinent to roadway safety for single- and multi-vehicle CMCs which occurred 

between 2001 and 2007 in Wisconsin.  Ordinal Logit (ORL) and Probit (ORP) regression models were 

employed for severity analyses.  For multi-vehicle CMCs, both models revealed road surface condition 
has a significant effect on the severity.  Adverse road surfaces enhance the likelihood of being involved in 

a more severe multi-vehicle CMC if one occurs.  Winter snow or ice impacts the CMC severity, and 

logically Wisconsin’s geographical location plays a significant role.  Although both models found the 
speed limit significant, they revealed different severity propensities, implying this factor should be treated 

cautiously and the necessity of applying different discrete-choice models to severity analyses if more 

comprehensive understanding is pursued.  Final ORP model for single-vehicle CMCs shows alcohol/drug 

use, lane curvature, and unfriendly roadway visibility exacerbate the severity if a single-vehicle CMC 
occurs.  Interestingly, dry road surface is found to significantly incur more severe consequences, which 

implies more severe single-vehicle CMCs are closely related to maintaining high speeds.  ORL modeling 

results were found statistically invalid for single-vehicle CMC severity analyses.  The median width and 
average daily traffic were found insignificant factors for both multi-vehicle and single-vehicle CMCs.     

  

Key words: 
Cross-median crash, severity analysis, ordered discrete-choice, statistical regression  
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INTRODUCTION 
 

From 2001 to 2007, a total of 298,198 people lost their lives in traffic crashes on roadways in the United 

States.  In 2007 alone, 41,059 people were killed on roadways in this country (1).  Roadway departure crashes 

(RDCs) are frequently severe and account for the majority of highway fatalities.  In 2008, there were 17,818 

fatal RDCs resulting in 19,794 fatalities, which was 52 percent of fatal crashes in that year in the United States.  

A RDC is defined as a non-intersection crash which occurs after a vehicle crosses an edge line or a centerline, 

or otherwise leaves the traveled way (2).  Often times, this crash type involves collisions with one (or more) 

objects including opposing vehicles, bridge rails, utility poles, embankments, guardrails, parked vehicles, or 

trees (3).  Over the same seven-year period, 5,439 people were killed on roadways in Wisconsin, representing 

approximately 1.82 percent of the national total.  Wisconsin experienced 737 fatal crashes in 2007 (4), being 

without exception to the high number of RDCs experienced nationally.  A recent report shows that roughly 54 

percent of all non-intersection crashes on undivided roadways in Wisconsin were RDC-type crashes (5).  This 

proportion is likely larger on the median-divided roadway system.  Separation of opposing traffic streams can 

be important and effective in the attempt to prevent head-on collisions, one of the most potentially serious 

types of crashes resulting from roadway departures.  Median areas which separate opposing traffic flows have 

long been an important safety design consideration.  The American Association of State Highway 

Transportation Officials (AASHTO) defines a median as “the portion of a highway separating directions of the 

traveled way”.  AASHTO’s “A Policy on Geometric Design of Highways and Streets” states “medians are 

highly desirable on arterials carrying four or more lanes” of traffic (6).  Even with the implementation of 

AASHTO’s policy and median widths of 60 feet or more, the frequency of crashes which involve vehicles 

crossing over the median area and then entering the opposing traffic are increasing nationally. 

The definition of cross-median crash (CMC) varies amongst state transportation agencies (STAs).  

This makes the application and comparison of CMC rate warrants impracticable.  Most STAs exclude in their 

definition the single-vehicle CMC in which the crossing vehicle only partially enters the opposing lane, or 

stops in (or passes through) the opposing lane(s) without striking a vehicle.  These variations may have a 

significant impact upon the number and length of highway segments identified for safety analysis.  To 

overcome this problem, Wisconsin Department of Transportation (WisDOT) adopts a definition originally 

developed by Caltrans: all crashes in which vehicles “traversed the median area, entered or went beyond the 

opposing lanes of traffic, involved multiple vehicles in head-on or sideswipe collisions, and there was property 

damage, injury, or fatality associated with the accident”.  However, single-vehicle CMCs, in which a vehicle 

crossed the median and entered opposing lanes without hitting an opposing vehicle or a roadside barrier, 

composed 80 percent of the cross-median incidents in this study.  Although the severities of single-vehicle 

CMCs are lower, they are still relatively severe as they often involve rollovers or roadside objects, but not 

head-on collisions.  Single-vehicle CMCs had the potential to become the more severe multi-vehicle CMCs, 

but simply found a gap in the opposing stream.  Additionally, the single-vehicle CMC severity is an important 

factor in predicting the safety performance of divided highways and in taking median-related safety measures.  

Therefore, single-vehicle CMCs were included in this study but modeled and analyzed separately.  

Although CMCs have been investigated in other states, their attributes in Wisconsin are not well 

understood.  A recent study using Texas data concluded that no roadway, vehicle, or driver factors affected the 

CMC severity significantly (7).  This study considered a small number of roadway factors and separated 

single-vehicle crashes from multi-vehicle ones, grouping them with non-cross median crashes.  This 

distinction reduced the sample size and contributed to insignificant regression results for severity.  A similar 

study in Pennsylvania, based on 138 CMCs which occurred across the entire state Interstate network between 

1994 and 1998, indicated that only curves and drug use were significant factors in severity prediction (8).  A 

detailed analysis of CMCs’ severity in Wisconsin will contribute to more understanding of nationwide CMCs 

and enhancing countrywide highway safety.  This paper describes the discrete-choice modeling efforts for 

exploring the nexus between the severity propensity and miscellaneous explanatory factors closely pertinent to 

roadway safety, with an intention to facilitate the decision-making process for identifying significant factors 

influencing CMCs’ severities and taking correspondent median-related safety enhancement schemes. 
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HISTORICAL RESEARCH 
  

In North America, research has been conducted for more than 50 years on relevant policies and practices for 

highway geometry design, especially median width and cross section, to address the median-related safety 

issue.  In one of the earliest studies, Hutchinson and Kennedy (9) studied Illinois’s Interstates and concluded 

rural highway medians should have a minimum width (30 feet) and a mild and obstacle-free cross-slope.  The 

“clear-zone” concept contributed to the standard median design for high-order highways.  Garner and Deen 

(10) examined median-related crashes and the practices regarding median width and cross-slope in Kentucky.  

They found a wider median facilitated the crossover prevention and a refuge for vehicles seeking to avoid in-

lane collisions.  The crash rate and severity were lower on highways with wide medians.  Traffic volumes were 

found limitedly influential on the crash occurrence.  This study supported the need for a clear and traversable 

median.  Deeply depressed and raised medians were discouraged to prevent roll-overs.  Later, Foody and Culp 

(11) studied mounded and depressed median types.  The former had slightly higher crash rates than the latter, 

but there was no significant difference in injury-related crashes, the number of encroachments, and the roll-

over frequency. 

Knuiman et al. (12) examined the relationship between median width and crash rates in Illinois and 

Utah.  With medians widened, head-on, sideswipe, and single-vehicle crashes decreased.  A 30-feet width was 

believed necessary to influence crash rates and further narrowed widths would compromise roadway safety.  

The largest improvements by widening medians were the reduction in overall crash rate, due to drivers using 

the median as an anti-collision refuge.  This reduction continued until a width (60 to 80 feet) where the safety 

improvement was maximized.  Donnell et al. (13) found CMCs rare in Pennsylvania; however, nearly 15 

percent involve fatalities and 72 percent involve injuries.  Crash rates at earth-divided highways decreased as 

medians become wider.  Crossover crashes appeared more likely to occur downstream of interchange entrance 

ramps and involve adverse road conditions than other crashes.  Richl and Sayed (14) determined the safety of 

using narrow medians due to mountainous terrain in British Columbia.  Their analysis revealed that narrow 

medians combined with tight horizontal curves made the sight distance insufficient.  Based on 140 single-

vehicle “median-side” and “right-side” encroachments, Sanderson (15) investigated vehicle encroachments on 

Canadian highways and found average roadway departure angle for both encroachments was 14 degrees and 

“median-side” types were twice as many as “right-side” ones.  No significant correlation was found between 

traffic volumes and the encroachment rate.  

Noyce and McKendry (16) developed a cost analysis using information in the Wisconsin Crash 

Outcome Data Evaluation System database and the National Highway Traffic Safety Administration model.  

They found that CMCs, in medical cost, exceed median-barrier crashes by approximately $19 million per year.  

Although the cost of installing median barriers could not be quantified, they concluded the potential medical 

and societal cost savings of installing median barriers at locations with high CMC frequency is significant.  

The safety and cost-effectiveness analyses by Donnell and Mason (17) found installing median barriers along 

Pennsylvania highways with median width up to 70 ft can produce safety and economic benefits which vary 

with traffic volumes.  In 1988, the AASHTO established guidelines to evaluate the need for median barrier 

under specific combinations of median width and ADT (18).  Current AASHTO median barrier warrant 

criteria are intended for use on high-speed, fully controlled access facilities with traversable medians.  A 

nationwide survey of median design and safety practices revealed that 43 of 50 STAs use the AASHTO criteria 

as state standard (17).  Importantly, the AASHTO guidelines suggest considering the roadway accident history 

in median-related safety design and practice, which motivated this CMC severity analysis.   

 

 

OBJECTIVE AND ACCIDENT DATA 
 

Based on CMC data in Wisconsin, the study objective was to explore the association of the severity propensity 

with median width, ADT, and other factors.  As the first step, traffic crash reports were assembled and 

analyzed to assess the magnitude of CMC occurrences in Wisconsin.  Roadway segments constructed with 

divided medians were selected as examination sites from Wisconsin’s roadway database.  Roadway segments 

installed with median barriers were excluded given the study scope was limited to segments classified as “non-

barrier” type.  Crash reports between 2001 and 2007 were collected; this seven-year period was chosen to get 
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comprehensive results of recent years of data available.  Wisconsin Motor Vehicle Accident Report 

(WMVAR) system contains extensive data (e.g., time, drivers/vehicles information, weather/road conditions, 

alcohol/drugs presence, collision manner, etc.) for each crash and supporting narratives and drawings from law 

enforcement personnel.  However, WMVAR procedure has no entry which explicitly identifies a CMC, so all 

RDCs on median-divided roadways were identified as potential CMCs.  Totally 37,277 reports were gathered 

from the WisDOT crash data archives, and each one was reviewed to determine whether the crash involved a 

vehicle that crossed the median and met the WisDOT-defined criteria.  Identification of CMCs was made by 

studying narratives and pictorial representations on reports.  Median widths and ADTs were supplemented to 

the data: width values were obtained from the “Wisconsin State Trunk Highway Log” and ADTs from the 

“Wisconsin Highway Traffic Volume Data Book” annually published by the WisDOT (21).  Each selected 

crash was geo-located either through its WisDOT Reference Point number or crossroads reference.  Several 

roadways and crash locations were verified through field investigations. 

CMCs were identified on all highway classes (Interstates, US Highways, and State Highways)(Table 

1).  After completing the screening procedure, 1,899 potential CMCs were initially identified.  Each selected 

crash was scrutinized to ascertain the prior action which could be viewed as the potential cause.  A total of 243 

crashes were disqualified from the pool during this process.  Crossover crashes involving objects (e.g., tire, 

animal, crash debris, or person) were removed as it was determined that standard median safety improvements 

may not have prevented these objects from traveling airborne across the median.  Tire crossovers compromised 

108 of the 139 total object crossover crashes; the remaining 31 crashes were made up of various objects.  Since 

only crashes that occurred at a location without a barrier were concerned, this criterion disqualified 88 crashes 

that involved a vehicle crossing the median despite an existing barrier; most of these vehicles vaulted or 

flipped over the barrier.  Additional 16 crashes were discarded due to drivers’ purposeful intention to cross 

medians, while 97 trailer-crossover crashes identified were excluded.  Using the WisDOT definition which 

only includes crashes in which a vehicle crosses the median and strikes or is struck by an opposite vehicle, 

1,250 single-vehicle crossover crashes were treated separately.  To reduce the noises in data, some more CMCs 

were excluded due to low speed limits and records with missing information.  To this end, 263 multi-vehicle 

CMCs and 1,019 single-vehicle ones were finally identified for analysis (Table 1). 

A majority of multi-vehicle CMCs involved a vehicle going straight in lanes before the collision.  The 

next most common actions include changing lanes or slowing/stopping maneuvers.  A WMVAR report review 

was performed to determine the most likely initial event leading to each multi-vehicle CMC.  Even though 

various factors may have been contributory, what was sought was the primary or initial event that causes all 

ensuing consequences.  A majority of multi-vehicle CMCs resulted from “a vehicle control loss on dry 

pavement” or “a vehicle control loss due to weather”.  The former pertained to CMCs in which the initial loss 

of control event happened on dry pavements.  This loss of control came from avoidance maneuvers, 

distractions, blackouts, or inattentiveness.  The latter pertained to CMCs where weather issues were cited in the 

report as a contributor.  Weather-related crashes could be broken down into wet roads resultant from rain, 

snow, and ice.  Since all WisDOT-defined CMCs involved a collision, the crossover extent was a function of 

the final resting position of the crossing vehicles.  “Partial” extent means finally some portion of the vehicle 

encroached into the opposing shoulder.  “Into” extent means vehicles finally rested within opposing lanes.  

“Beyond” extent means vehicles finally rested beyond the outside shoulder of the opposing roadway.  It was 

found that “Into” accounted for most of total and “Partial” is the fewest. 
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Table 1  Specifics of CMC Data for Severity Analysis  

Section I: WI highways reviewed for crossover crashes 

Interstates I-39, I-43, I-90, I-94 

U.S. Highways (USH) 10, 12, 14, 18, 41, 45, 51, 53, 141, 151 

WI State Highways (STH) 23, 29, 30, 35, 54, 57, 172 

Section II: Summary of crossover crash total calculations 

Initial selected crossover crashes 1,899 

Object crossover crashes 

      [tire crossover crashes] 

      [other object crossover crashes] 

-139 

[-108] 

[-31] 

Median barrier crossover crashes 

      (vehicle rollover or penetrated existing barrier) 

-88 

 
Intentional crossover crashes (median U-turns or police evasion) -16 

Initially selected single-vehicle CMCs -1,250 

Trailer crossover crashes -97 

Multi-vehicle crashes at locations with low speed limit (<45mph)  -8  

Multi-vehicle crashes with missing information -38 

Finally selected multi-vehicle (and single-vehicle) CMCs for severity analysis 263 (1,019) 

Section III: Multi-vehicle CMCs and single-vehicle CMCs by year 

 Frequency distribution of crashes 

Year Multi-vehicle CMCs  Single-vehicle CMCs 
 Frequency Percent (%)  Frequency Percent (%) 

2001 28 10.65  146 14.33 

2002 35 13.31  160 15.70 

2003 40 15.21  129 12.66 

2004 41 15.59  164 16.09 

2005 55 20.91  165 16.19 

2006 40 15.21  130 12.76 

2007 24 9.13  125 12.27 

Total 263 100.0  1,019  100.0 

Section IV: Subject CMCs by severity 

CMC Severity  

 

Frequency distribution of crashes 

Multi-vehicle CMCs  Single-vehicle CMCs 

Frequency Percent (%)  Frequency Percent (%) 

PDO 44 16.73  442 43.38 

Injury 161 61.22  542 53.19 

Fatal 58 22.05  35 3.43 

Total 263 100.0  1,019 100.0 

Section V: Subject CMCs and related median width 

 

Median Width Level (ft) 

Frequency distribution of crashes 

Multi-vehicle CMCs  Single-vehicle CMCs 

Frequency Percent (%)  Frequency Percent (%) 

< 30 13 4.94  38 3.73 

30 – 39 24 9.13  84 8.24 

40 – 49 10 3.80  44 4.32 

50 – 59 54 20.53  217 21.30 

60 – 69 137 52.09  536 52.60 

70 – 79 3 1.14  24 2.36 

80 + 22 8.37  76 7.46 

Total 263  100.0  1,019 100.0 
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STUDY METHODOLOGY 
 

Road safety analysis often applies a statistical regression model to historical data of historical accidents and 

roadway, driver, weather and miscellaneous factors.  The hope is that the fitted model can estimate the safety 

effect of factors of interest (22).  Traffic crash study addresses the probability of a crash occurrence or the 

severity resultant from a crash involvement.  Through statistically analyzing previous crash data, the severity 

study explores the influence of variables of interest on the injury levels if a crash occurs. 

   

Severity Modeling 

Crash severity is ordinal in nature and the nexus between the response and independent variables involved is 

nonlinear, so linear regression is inappropriate for severity modeling.  Ordinal discrete-choice models, which 

use factors selected to predict the probability that the severity is of an ordinal scale given a crash involvement, 

are appropriate (23).  Logistic model is in common use: Kim et al. used it to explain the likelihood of an 

impaired motorcycle crash as a function of rider characteristics and some factors (24); Krull et al. employed it 

to study how some factors impact the probability of fatality and injuries (25).  In contrast, multinomial Logit 

(MNL) and Probit (MNP) models neglect the ordinality in severity and require more parameter estimates since 

each discrete choice is connected to a separate set of parameters.  The MNL model has an undesirable property 

known as the “independence of irrelevant alternatives (IIA)”, which states that the ratio of the probabilities of 

two alternatives is independent from any other alternatives present (26).  Contrary to the MNL model, the 

MNP model is more flexible because it relaxes the IIA assumption, thus allowing for correlations among 

alternative-based error terms.  However, the integrations in MNP regression are computationally burdensome, 

especially when there are many alternatives (26).  Yet the most frequently chosen model is ordinal Logit 

(ORL) or Probit (ORP) model based on continuous and/or discrete variables (27).  The former converges more 

quickly, whereas the latter is more commonly employed perhaps due to an appealing theoretical rationale: if 

the disturbance term represents the mixed impact of various factors not mathematically expressed in model, 

Central Limit Theorem can be invited to justify the normality assumption.  Previously, Duncan et al. used the 

ORP model to identify factors influencing rear-end crash severities (28).  Renski et al. employed it for speed 

limits (29).  Kockelman and Kweon looked at injury risk sustained under all crash types (30).  Abdel-Aty 

calibrated ORP models for varied infrastructure elements (31).  Deng et al. employed it to analyze the 

association between head-on crashes and causal factors (32).  The ORL model was also widely used for 

severity analyses.  As two examples, Lu et al. (33) employed it for three-year median-crossover crashes in 

Wisconsin, while Donnell and Mason (17) conducted similar research in Pennsylvania.  

    

Model Structures  
An ordinal discrete-choice model can be derived from a measurement model in which a latent, unobservable, 

continuous variable  is mapped to an observed ordinal .  Ranging from -∞ to +∞, provides the injury 

propensity and  is observed to unveil incomplete information about underlying  based on the measurement 

equation: 

  

   if          (Equation-1) 

 

Where =  denotes cut points: , -∞, +∞, and .  The observable 

 is related to through   in Equation-1, and the ordinal model has generic form:  

  

  ß +          (Equation-2) 

 

Where:  – Vector of the th observation ( );  

ß =  – Vector of variable coefficients; 

The th variable for the th observation;  

 – Total number of independent observations;  

 – Total number of variables; 

 – Error term.    
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It is assumed  has the probability density and cumulative distribution functions ( , ) with .  

Based on Equation-2, the probability that the th observation has severity  is: 

 

     (Equation-3) 

 

Logit Model – When  has a Logistic distribution , the odds that the severity is  or 

higher versus lower than  are: 

 

     (Equation-4) 

 

Equation-4 shows the effect of a unit change in  on severity propensity can be quantified by odds ratio .   

 

Probit Model – When  has a standard Normal distribution , the marginal effect of   on 

severity  can be quantified by taking the partial derivative of Equation-3: 

 

     (Equation-5) 

 

Note that the marginal effect on the interior category (injury) is vague because a shift in the distribution can 

cause the probability of the injury level to ascend or descend, depending on the position of the average 

response.  Therefore, the extreme care must be taken in interpreting ORP modeling results.   

 

MLE Regression – Maximum likelihood estimation (MLE) generates the regression of ’s on N observations.  

Equation-3 gives the log-likelihood function for either model: 
 

  (Equation-6) 

 

Here the indicator =0 or 1.  To maximize Equation-6 generates estimates: , 

. Odds ratio and marginal effects can be estimated by  and 

, while  denotes averages from all observations.  Marginal effects follow the 

constraint that the probabilities add to 1.  Note that, for a dummy variable in ORP models, the derivative while 

treating it as a continuous variable offers an “often surprisingly accurate” approximation (26). 

 

 

MODEL ESTIMATION 

 

The crash-related attributes recorded in reports are critical in severity analyses.  Those factors are temporal in 

nature and depict prevailing situations in which a crash occurred.  As they vary, it is expected the driver 

behaviors and the vehicle performance change too; thus, when a crash happens, the severity propensity may 

differ.  For instance, it is more difficult to control a vehicle on a wet or icy road surface than on a dry surface, 

and impact speeds may be larger.  Some factors regarding geometry, roadway, weather, environment, driver, 

vehicle, and traffic flow were selected for the severity modeling, based on data availability, accuracy, and 

relevant information in previous studies.  Some factors (e.g., gender) were excluded due to inaccurate or 

missing records in crash reports; while others (e.g., safety belt use) were disregarded for the sake of reasonable 

interpretation because the observation unit was based on all occupants in a vehicle and the severity level refers 

to the worst injury that all occupants experienced in a CMC.  These factors, and their dummy variables, 

selected for single-vehicle and multi-vehicle analyses are depicted separately in Section I & II of Table 2.  The 

circumstances under which a more severe injury was expected were defined to be 1 and otherwise 0.  For 

example, an adverse weather was expected to contribute to a more severe CMC, so MWEATHER were 

defined to 1 when the weather was adverse and 0 otherwise. 
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Table 2  Wisconsin CMC Severity Modeling: Variables, Definition, and Statistics 
Section I: Multiple-vehicle WisDOT-defined CMCs for analysis (N = 263 Observations)  

Variable  
Name  

in Analysis  

 

Explanation of Variables 
 

 

 

Type 
 

 

 

WMVAR Categories, 
Independent Variables 

Defined,  Data Ranges 

 

Statistics 
Counts( n) 

Minimum 
Mean 

Percentage 

Maximum 
Std. Dev. 

MSEVRITY 

  

 

Severity levels of Multiple-

Vehicle (M-V) CMCs  

 

Categorical 

(Response) 

 

1: PDO  

2: Injury  

3: Fatality  

n = 44 

n = 161 

n = 58 

16.7% 

61.2% 

22.1% 

MVEHS 

 

 

 

Non-trucks (car, SUV, van) and/or 

trucks (large truck, semi tractor, 

and pickup truck) involved in a M-

V CMC 

Categorical  

(predictor) 

 

 

1: Truck(s) and car(s) 

involved  

0: Same vehicle types 

involved   

n = 101 

n = 162  

 

 

38.4% 

61.6% 

 

  

MALCODRUG 

 

 

Whether a driver was listed as 

drinking alcohol (or using drugs) 

before the recorded M-V CMC 

Categorical 

(predictor) 

 

1: Alcohol/drugs used 

0: No alcohol/drugs used  

 

n = 16 

n = 247 

 

6.1% 

93.9% 

 

MWETRD 

 

 

Pavement surface of the roadway 

at the point of M-V CMC site 

 

Categorical 

(predictor) 

 

1: Adverse  

    (wet/snowy/icy) surface  

0: Dry road surface           

n = 139 

n = 124 

 

52.9% 

47.1% 

 

MWEATHER 

 

Weather condition under which 

the recorded M-V CMC occurred 

Categorical 

(predictor) 

1: Fog/Snow/Sleet/Rain 

0: No adverse conditions  

n = 115  

n = 148 

43.7% 

56.3% 

MDARK 

 

The lighting condition at time of 

M-V CMC 

Categorical 

(predictor) 

1: Dark, dawn, or dusk  

0: It is daylight       

n = 91 

n = 172 

34.6% 

65.4% 

MXOVREXNT 

 

 

Crossover extent based on 

stoppage position related to lanes 

in opposing direction  

Categorical 

(predictor) 

 

1: “Beyond” or “Into” extent         

0: “Partial” extent 

 

n = 251 

n = 12 

 

95.4% 

4.6% 

 

MRDCURV 

 

The horizontal alignment at the 

point of impact   

Categorical 

(predictor) 

1: Curved  

0: Straight 

n = 143 

n = 120 

54.4 % 

45.6% 

MRDHILL 

 

The vertical alignment at the point 

of impact   

Categorical 

(predictor) 

1: Hilly  

0: Level/Flat 

n = 50 

n = 213 

19.0% 

81.0% 

MPOSTSPD 

 

The speed limit posted on the 

roadside at the point of impact 

Interval 

(predictor) 

Range: 45 – 65 mph  

 

Min =45 

 

Max=65 

 

MMDNWDTH 

  

Highway median width where the 

recorded M-V CMC occurred  

Interval 

(predictor) 

Range: 10-730 feet  

 

Min = 10 

 

Max = 730 

 

MTOTLADT 

 

Total ADTs on both directions at 

the point of M-V CMC site 

Continuous 

(predictor) 

Range: 4,700-92,600 vehicles 

per day 

Mean =  

38,008.82 

S.D.= 

18554.81 
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Table 2  Wisconsin CMC Severity Modeling: Variables, Definition, and Statistics (Continued) 
 Section II: Single-vehicle CMCs for analysis (N = 1,019 Observations)  

Variable 
Name in 
Analysis  

 

Explanation of Variables  
 
 

 

Type 
 
 

 

WMVAR Categories,  
Indicators Defined & Data 
Ranges 

 

Statistics 
Counts(n) 
Minimum 
Mean 

Percentage 
Maximum 
Std. Dev. 

SSEVRITY 

  

 

Severity levels of Single-Vehicle  

(S-V) CMCs  

 

Categorical 

(Response) 

 

1: PDO  

2: Injury  

3: Fatality  

n = 442 

n = 542 

n = 35 

% = 43.4 

% = 53.2 

% = 3.4 

SHVYTYPE 

 

  

 

The type of the vehicle involved 

in a S-V CMC 

 

 

Categorical 

(predictor) 

 

 

1: Heavy vehicle types  

(Pickup/large trucks) 

0: Non-Heavy vehicle types  

    (Car/Van/SUV)  

n = 227 

 

n = 792 

 

% = 22.3 

  

% = 77.7 

 

SALCODRUG 

 

 

Whether a driver was listed as 

drinking alcohol (or using drugs) 

before the recorded S-V CMC 

Categorical 

(predictor) 

 

1: Alcohol/drugs used 

0: No alcohol/drugs used  

 

n = 118 

n = 901 

 

% = 11.6 

% = 88.4 

 

SWETRD 

 

 

Pavement surface of the roadway 

at the point of S-V CMC site 

Categorical 

(predictor) 

 

1: Adverse  

    (wet/snowy/icy)  surface  

0: Dry road surface 

n = 427 

n = 592 

 

% = 41.9 

% = 58.1 

 

SWEATHER 

 

Weather condition under which 

the recorded S-V CMC occurred 

Categorical 

(predictor) 

1: Fog/Snow/Sleet/Rain 

0: No adverse conditions  

n = 321  

n = 698 

% = 31.5 

% = 68.5 

SDARK 

 

The lighting condition at time of 

S-V CMC 

Categorical 

(predictor) 

1: Dark, dawn, or dusk  

0: It is daylight       

n = 446 

n = 573 

% = 43.8 

% = 56.2 

SXOVREXNT 

 

 

Crossover extent based on 

stoppage position related to lanes 

in opposing direction  

Categorical 

(predictor) 

 

1: “Beyond” or “Into” extent         

0: “Partial” extent 

 

n = 767 

n = 252 

 

% = 75.3 

% = 24.7 

 

SRDCURV 

 

The horizontal alignment at the 

point of impact   

Categorical 

(predictor) 

1: Curved  

0: Straight 

n = 120 

n = 899 

% = 11.8 

% = 88.2 

SRDHILL 

 

The vertical alignment at the 

point of impact   

Categorical 

(predictor) 

1: Hilly  

0: Level/Flat 

n = 152 

n = 867 

% = 14.9 

% = 85.1 

SPOSTSPD 

 

The speed limit posted on the 

roadside at the point of impact  

Interval 

(predictor) 

Range: 45 – 65 mph 

 

Min = 45 

 

Max = 65 

 

SAGE  

 

 

The age of the driver at the time 

of the recorded S-V CMC, 

generated from birthdates 

Interval  

(predictor) 

 

Range:  15 - 86 years 

 

 

Min = 15 

 

 

Max = 86 

 

 

SMDNWDTH 

  

Highway median width where the 

recorded S-V CMC occurred  

Interval 

(predictor) 

Range: 10-350 feet  

 

Min = 10 

 

Max = 350 

 

STOTLADT 

 

Total ADTs on both directions at 

the point of S-V CMC site 

Continuous 

(predictor) 

Range: 4,500-92,600 vehicles 

per day 

Mean =  

29,822.4 

S.D. = 

18,121.5 

WMVAR: Wisconsin Motor Vehicle Accident Report. 

 

 

Model selection methods (e.g., forward, backward, etc.) are available in common tools.  However, they may 

give incorrect estimates of the standard errors and p-values, delete critical variables, and most important, allow 

researchers not to think independently (34).  It should be better to compare different models estimated from the 

same data based on their results, reasonableness, and goodness-of-fit, using the measures such as Akaike 

Information Criterion (AIC), Bayesian information criterion (BIC), etc.  AIC is defined as , 

where  is the likelihood value of the model and K is the number of free parameters (35).  However, AIC 

may underperform if there are many parameters with respect to sample size ( ).  Sugiura derived a small-

sample expression which leads to a refined criterion generally recommended for the small ratio (  (<40.0): 

(36).   is defined as , which penalizes free 

parameters more strongly than AIC.  The advantage lies in the capability to account for the model parsimony 

which means, other things being equal and given any two models with equal log-likelihood values, the model 

with fewer parameters is evaluated as better.  A model with smaller AIC, AICc, and BIC is considered “closer” 
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to the unknown true model (37).  Both ORP and ORL models were estimated for CMC injury status to obtain 

more understandings of underlying severity propensity via different ordinal discrete-choice modeling 

methodologies.   

  

Multiple-Vehicle CMCs 

Table 3 shows separate results for ORP and ORL analyses of multi-vehicle CMCs.  The coefficients estimated 

are listed, and p-values (in brackets) less than 0.05 are usually considered statistically significant.  Model A1 

encompassed all selected variables.  MWEATHER and MWETRD were strongly correlated since bad 

weathers lead to adverse pavement surfaces.  Model A2 discarded MWEATHER and two variables 

(MMDNWDTH and MTOTLADT) with very high p-values.  Model A2 results show MALCODRUG and 

MPOSTSPD are statistically significant, while MWETRD, MVEHS, and MXOVREXNT have relatively small 

p-values (<0.20).  MRDCURV, MRDHILL, and MDARK were excluded in further modeling due to much 

higher p-values.  Note AIC, AICc, and BIC decrease from Model A1 to A2, which means the progress in 

parsimony.  In Model A3, MVEHS are found insignificant, while MPOSTSPD and MALCODRUG are 

significant at a 90% confidence level.  MWETRD and MXOVREXNT have p-values little bigger than 0.10.  

Although MXOVEREXNT turned out to be strongly correlated with the severity, it refers to the final resting 

position of the vehicle after the collision and as such may have limited effect on the severity.  Therefore, only 

three factors were retained in Model A4 in which MPOSTSPD is found significant while other two factors 

have p-values around 10%.  Smaller AICc and BIC in A4 represent more parsimony is obtained.  The marginal 

effects computed in Model A4 reveal that the change to alcohol/drug use decreases the probability of fatality 

severity by 0.079, which is entirely contradictive to the common sense.  Therefore, this factor was excluded in 

Model A5 in which MWETRD and MPOSTSPD are significant at 90% confidence level considering the 

relatively small sample.  BIC is reduced, and Model A5 is viewed as the final model for multi-vehicle CMCs.  

The score test for the equal slopes assumption has an insignificant p-value of 0.216 (degrees of freedom 

(d.f.)=2), which indicates that the ORP model adequately fits the data because the hypothesis that the 

regression lines for cumulative Probits are parallel is retained.  The likelihood ratio test p-value of 0.018 

(d.f.=2) indicates that the global null hypothesis is rejected, and the conclusion is that the variables given in the 

model affect the severity, or the model with independent variables is statistically better than the model with 

only the intercept.   

In the final model, it is found that wet road surface and higher posted speed limit will strengthen the 

propensity of worse severity given a multi-vehicle CMC occurs.  Based on Equation-5, the estimated marginal 

effect unveils the information on how the propensity changes with a unit change in the value of an independent 

variable beyond its mean provided all other variables are maintained at means.  Hence, the marginal effect 

allows us to determine the impact of each variable on the probability of each severity level, and some cautions 

should be given to the “injury” severity interpretation.  Marginal effects estimated for road conditions show 

that a unit increase beyond the mean value increases the probability of an injury and fatality-type CMC by 

0.009 and 0.028 respectively given the means of other explanatory variables are maintained, and this is 

captured by a decrease in the probability of PDO-type (-0.037).  Therefore, the severity becomes worse if there 

is a change from dry to adverse road surface, and it is inferred that the weather aggravates the multi-vehicle 

CMC severity given its strong casual association with adverse road condition which is unfriendly for driving.  

It is also found that the severity becomes aggravated if there is a unit increase in the speed limit posted along 

roadways.  A unit increase beyond the mean speed limit increases the probability of an injury and fatality-type 

CMC by 0.003 and 0.009 respectively, and this is offset by a decrease in the probability of PDO-type CMC (-

0.012).  It is inferable that drivers on roadways with higher speed limits will definitely maintain a faster speed, 

and this increases the likelihood of being involved in a more severe consequence if a CMC happens. 
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Table 3  Ordinal Discrete-choice Analyses of Multi-vehicle CMCs in Wisconsin 

Section I: Severity study by Ordinal Probit (ORP) regression model (N=263) 
  Model Coefficient Estimates (p-values)   Marginal Effect Estimates  
Independent  
Variables A1 A2 A3 A4  A5 PDO  Injury Fatality 
 

Driver                 

MALCODRUG -0.672(0.033) -0.625(0.045) 0.259(0.090) 0.276(0.070)      

 

Roadway             

MWETRD -0.138(0.556) 0.213(0.148) -0.117(0.105) -0.109(0.126)  -0.122(0.086) -0.037 0.009 0.028 

MRDCURV -0.174(0.229) -0.179(0.212)        

MRDHILL -0.124(0.497) -0.095(0.601)          
MPOSTSPD -0.040(0.034) -0.038(0.039)  -0.034(0.058) -0.036(0.048) -0.038(0.034) -0.012 0.003 0.009 

MMDNWDTH -0.00007(0.965)           

MTOTLADT 1.02E-7(0.980)           

 

Crash             

MVEHS -0.218(0.146)  -0.202(0.173)  0.097(0.188)       

MXOVREXNT -0.573(0.099) -0.542(0.117) 0.277(0.107)       

 

Environment              

MWEATHER 0.456(0.053)               

MDARK 0.166(0.286) 0.184(0.233)            

 

Model-specific  

attributes                 

Intercept 1 ( ) 2.120(0.084) 1.973(0.105) 1.185(0.316) 1.036(0.375)  1.436(0.210)       

Intercept 2 3.954(0.001) 3.789(0.002) 2.987(0.012) 2.820(0.017)  3.207(0.006)       

 

Thresholds                 

 ( ) 0.000 0.000 0.000 0.000  0.000       

 1.834 1.816 1.802 1.784 1.771    

"-2 LL" 468.119 471.924 475.201 479.337 482.675       

AIC 494.119 491.924 489.201 489.337 490.675       

AICc 495.581 492.797 489.640 489.570 490.830       

BIC 540.557 527.646 514.206 507.198 504.964       

Score Test for 

Equal Slopes 

 

=6.868 

(d.f.=11) 

p=0.810 

=4.310  

(d.f.=8) 

p=0.828 

= 3.247  

(d.f.=5) 

p= 0.662 

=2.945  

(d.f.=3) 

p= 0.400 

=3.064 

(d.f.=2) 

p=0.216    

Likelihood Ratio 

Test 

 

=22.601 

(d.f.=11) 

p=0.020 

=18.796  

(d.f.=8) 

p=0.016 

= 15.520  

(d.f.=5) 

p=0.008 

=11.384 

(d.f.=3) 

p= 0.010 

=8.046 

(d.f.=2) 

p=0.018    
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Table 3  Ordinal Discrete-choice Analyses of Multi-vehicle CMCs in Wisconsin (Continued) 

Section II: Severity study by Ordinal Logit (ORL) regression model (N=263) 
  Model Coefficient Estimates (p-values)    
Independent  
Variables a1 a2 a3 a4 a5  

Odds 
Ratio 

95% Wald 
Confidence Limits 

 

Driver                 

MALCODRUG 0 0.573(0.032) 0.539(0.041) 0.438(0.088) 0.473(0.065)      

 

Roadway             

MWETRD 0 0.134(0.513) -0.196(0.132) -0.215(0.092) -0.197(0.117)  -0.219(0.080) 0.804 (0.396,  1.054) 

MRDCURV 0 0.149(0.241) 0.161(0.202)        

MRDHILL 0 0.104(0.517) 0.088(0.582)          
MPOSTSPD -0.069(0.036) -0.063(0.050)  -0.058(0.069) -0.059(0.061) -0.063(0.045) 0.939 (0.883,  0.999) 

MMDNWDTH 0.0001(0.97)           

MTOTLADT 1.72E-7(0.98)           

 

Crash             

MVEHS 0 0.193(0.143) 0.181(0.164) 0.172(0.183)       

MXOVREXNT 0 0.497(0.097) 0.483(0.106) 0.489(0.099)      

 

Environment             

MWEATHER 0 -0.415(0.045)              

MDARK 0 -0.146(0.285) -0.169(0.214)           

 

Model-specific  

attributes                

Intercept 1 ( ) 2.566(0.219) 2.207(0.288) 1.975(0.336) 1.652(0.414) 2.333(0.239)       

Intercept 2 5.644(0.008) 5.249(0.013) 4.985(0.017) 4.621(0.024) 5.276(0.009)        

 

Thresholds                

 ( ) 0.000 0.000 0.000 0.000  0.000       

 3.079 3.043 3.010 2.969  2.943       

"-2 LL" 468.013 471.680 475.135 479.424 482.802       

AIC 494.013 491.680 489.135 489.424 490.802       

AICc 495.475 492.553 489.574 489.657 490.957       

BIC 540.451 527.402 514.140 507.285 505.091       

Score Test for 

Proportional Odds  

 

 =6.736 

(d.f.=11) 

p=0.820 

 =4.291 

(d.f.=8) 

p=0.830 

=3.149 

(d.f.=5) 

p=0.677 

=2.826 

(d.f.=3) 

p=0.419 

=2.965 

(d.f.=2) 

p=0.227    

Likelihood Ratio 

Test 

 

=22.708 

(d.f.=11) 

p=0.019 

=19.040 

(d.f.=8) 

p=0.015 

=15.585 

(d.f.=5) 

p=0.008 

=11.297 

(d.f.=3) 

p=0.010 

=7.919 

(d.f.=2) 

p=0.019    

 

 

Along the same thought line, the final ORL model (a5) indicates the MWETRD and MPOSTSPD are also 

significant at 90% confidence level.  The score test for the proportional odds assumption has a p-value of 0.227 

(d.f.=2), which indicates that the proportional odds model adequately fits the data because the hypothesis that 

the regression lines for cumulative Logits are parallel is retained.  The likelihood ratio test p-value of 0.019 

(d.f.=2) indicates that the global null hypothesis is rejected, then the predictor variables given in the model are 

believed to affect the severity.  The odds ratio is used to quantify the effect of significant independent variables 

on the response variable, which can explain the relative effects of a unit change in the variable on the severity 

propensity.  The relative effect of a dry road surface versus an adverse surface is exp(-0.219)=0.804.  This 

indicates that the odds of “fatality” severity versus “injury or PDO” severity (or “fatality or injury” severity 

versus “PDO” severity) decrease by 19.6% when the road surface changes from adverse to dry condition.  

Alternatively, this implies adverse road condition incurs more severe injury when a CMC occurs, which is 

statistically consistent with the findings from final ORP model above.  However, if there is a unit increase in 

the speed limit posted along roadways, the odds of “fatality” severity versus “injury or PDO” severity decrease 

by 6.10%.  This implies the probability of higher severity levels (i.e., injury or fatality) is diminished, although 

not substantially, when the speed limit is increased by 1 mile per hour.  Alternatively, it can be interpreted that 

higher severities occur on roadways with lower speed limits.  Although appearing to be counterintuitive, this 

variable could be likely capturing the safety implications of the lower design criteria of state and US Highways 

relative to the higher posted speed Interstate routes.  On the basis of the results of the ORL analysis, the 

regression equations can be written: 
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      (Equation-7) 

     (Equation-8) 

Where 

  = Probability of “PDO” severity; 

  = Probability of “Injury” severity; 

  = Probability of “Fatality” severity; 

  = Road surface condition indicator (1 if dry road condition, 0 otherwise (adverse: wet/snowy/icy)); 

   = Posted speed limit along roadway (Range: 45 – 65 mph);  

 

The predicted probabilities can then be computed as follows: 

 

  ,  ,    (Equation-9) 

 

 

 

Single-Vehicle CMCs  
Two sections in Table 4 show separate sets of discrete-choice modeling results for single-vehicle CMCs.  In 

section I, Model B1 represents the full model including all explanatory variables selected for single-vehicle 

CMCs.  Following the same analytical procedure as above, Model B4 was the final model and it reveals that 

SALCODRUG, SWETRD, SRDCURV, and SDARK are statistically significant in influencing the severity 

levels at a 94% confidence level.  The score test for the equal slopes assumption has an insignificant p-value of 

0.099 (d.f.=4) larger than 0.05, which indicates that the ORP model adequately fits the data.  The likelihood 

ratio test p-value of <.0001 (d.f.=4) indicates that the variables in Model B4 have significant effects.    

The estimated marginal effects show the probability of a fatality-type or injury-type CMC will be 

increased by 0.021 and 0.103 while the probability of a PDO-type CMC will be decreased by 0.123, if 

alcohol/drug is used when a single-vehicle CMC occurs.  Curved lanes and unfriendly (i.e., dark/dusk/dawn) 

roadway visibility will also increase the probability of a fatality-type CMC by 0.019 and 0.010 or the 

probability of an injury-type CMC by 0.093 and 0.048, while the probability of a PDO-type CMC decreases by 

0.112 and 0.058.  Interestingly, dry road conditions intensify the tendency to be involved in a more severe 

single-vehicle CMC, which is contrary to a finding in the multi-vehicle case.  This could be explained by the 

fact that drivers on dry road conditions keep higher speeds in comparison with other adverse (i.e., 

wet/snowy/icy) conditions.    

In section II for ORL modeling results, the score tests for the proportional odds assumption in all 

models (from b1 to b4) has p-values (i.e., 0.046, 0.030, 0.029, and 0.018) smaller than 0.05.  Therefore, the 

hypothesis that the regression lines for cumulative Logits are parallel is rejected, which means the ORL models 

are statistically inappropriate for analyzing 1,019 single-vehicle CMCs.    
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Table 4  Ordinal Discrete-choice Analyses of Single-vehicle CMCs in Wisconsin 

Section I: Severity study by Ordinal Probit (ORP) regression model (N = 1,019) 
  Model Coefficient Estimates (p-values)   Marginal Effect Estimates 
Independent  
Variables B1 B2 B3 B4  PDO  Injury Fatality 
 

Driver                

SALCODRUG -0.315(0.011) -0.306(0.013) -0.296(0.015) -0.314(0.010)  -0.123 0.103 0.021 

SAGE -0.002(0.418)             

 

Roadway         

SWETRD 0.482(0.0001) 0.422(<.0001) 0.421(<.0001) 0.432(<.0001)  0.170 -0.141 -0.028 

SRDCURV -0.272(0.021) -0.282(0.015) -0.289(0.012) -0.285(0.014)  -0.112 0.093 0.019 

SRDHILL -0.090(0.405)        

SPOSTSPD -0.012(0.319) -0.011(0.334)       

SMDNWDTH 0.0001(0.952)             

STOTLADT 2.545E-6(0.23) 2.57E-6(0.221)       

 

Crash         

SHVYTYPE 0.090(0.334) 0.076(0.408)       

SXOVREXNT -0.150(0.092) -0.145(0.104) -0.138(0.121)      

 

Environment         

SWEATHER -0.076(0.561)        

SDARK -0.158(0.046) -0.147(0.062) -0.142(0.068) -0.147(0.058)  -0.058 0.048 0.010 

 

Model-specific  

attributes         

Intercept 1 ( ) 0.638(0.400) 0.521(0.487) -0.118(0.202) -0.221(0.0004)     

Intercept 2 2.723(0.0004) 2.603(0.0006) 1.961(<.0001) 1.853(<.0001)     

 

Thresholds            

 ( ) 0.000 0.000 0.000 0.000        

 2.085 2.082 2.078 2.074     

"-2 LL" 1595.721 1597.470 1600.399 1602.811        

AIC 1623.721 1617.470 1614.399 1614.811        

AICc 1624.139 1617.688 1614.510 1614.894        

BIC 1692.693 1666.736 1648.885 1644.370        

Score Test for Equal 

Slopes  

 

=16.107 

(d.f.=12) 

p=0.186 

=12.520 

(d.f.=8) 

p=0.130 

=8.014 

 (d.f.=5) 

p=0.156 

=7.794 

 (d.f.=4) 

p=0.099     

Likelihood Ratio Test 

 

=62.982 

(d.f.=12) 

p=<.0001 

=61.234 

(d.f.=8) 

p=<.0001 

=58.304 

(d.f.=5) 

p=<.0001 

=55.892 

(d.f.=4) 

p=<.0001     
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Table 4  Ordinal Discrete-choice Analyses of Single-vehicle CMCs in Wisconsin (Continued) 

Section II: Severity study by Ordinal Logit (ORL) regression model (N = 1,019) 
  Model Coefficient Estimates (p-values)    
 
Independent  
Variables b1 b2 b3 b4   

Odds 
Ratio 

95% Wald 
Confidence Limits 

 

Driver                 

SALCODRUG 0 0.238(0.028) 0.232(0.032) 0.225(0.036) 0.239(0.025)  1.270 (1.062, 2.453) 

SAGE  -0.003(0.476)             

 

Roadway         

SWETRD 0 -0.389(0.0002) -0.349(<.0001) -0.349(<.0001) -0.357(<.0001)  0.700 (0.379, 0.633) 

SRDCURV 0 0.212(0.036) 0.217(0.030) 0.224(0.025) 0.221(0.026)  1.247 (1.053, 2.297) 

SRDHILL 0 0.064(0.484)        

SPOSTSPD -0.017(0.405) -0.015(0.434)       

SMDNWDTH 0.0007(0.838)             

STOTLADT 4.86E-6(0.175) 4.80E-6(0.175)       

 

Crash         

SHVYTYPE 0 -0.076(0.331) -0.066(0.388)       

SXOVREXNT 0 0.121(0.104) 0.118(0.113) 0.110(0.136)      

 

Environment         

SWEATHER 0 0.051(0.636)        

SDARK 0 0.140(0.037) 0.132(0.047) 0.126(0.055) 0.131(0.0.047)  1.139 (1.004, 1.679) 

 

Model-specific  

attributes         

Intercept 1 ( ) 0.432(0.733) 0.343(0.785) -0.536(0.0001) -0.599(<.0001)     

Intercept 2 4.161(0.001) 4.069(0.0013) 3.184(<.0001) 3.116(<.0001)     

 

Thresholds             

 ( ) 0.000 0.000 0.000 0.000         

 3.729 3.726 3.720 3.715     

"-2 LL" 1600.503 1601.785 1604.794 1607.037         

AIC 1628.503 1621.785 1618.794 1619.037         

AICc 1628.921 1622.003 1618.905 1619.120         

BIC 1697.475 1671.051 1653.280 1648.596         

Score Test for 

Proportional Odds  

 

=21.281 

 (d.f.=12) 

p=0.046 

=17.063 

 (d.f.=8) 

p=0.030 

=12.449 

 (d.f.=5) 

p=0.029 

=11.946 

 (d.f.=4) 

p=0.018     

Likelihood Ratio 

Test 

 

=58.201 

(d.f.=12) 

p=<.0001 

=56.918 

(d.f.=8) 

p=<.0001 

=53.910 

(d.f.=5) 

p=<.0001 

=51.667 

(d.f.=4) 

p=<.0001     

 

 

 

CONCLUSIONS 
 

The common definition of a CMC is where a vehicle crosses the median over and collides with a vehicle(s) in 

opposing lane(s).  For multiple-vehicle MCCs in Wisconsin between 2001 and 2007, an investigation revealed 

they occurred across all highway classes.  Most of multi-vehicle MCCs involved a vehicle going straight in 

lanes before their occurrences and resulted from “a vehicle control loss on dry pavement” or “a vehicle control 

loss due to weather”.  Wisconsin data also show that single-vehicle CMC are more common (80% of all 

CMCs) than multi-vehicle CMCs.  Although less severe than multi-vehicle CMCs, modeling their severity 

expands upon previous studies and adds to the knowledge of these severe crashes not satisfactorily studied thus 

far.   

ORL and ORP models were estimated for CMC injury status to obtain more understandings of 

underlying severity propensity via different modeling methodologies.  The response contained three levels: 

fatality, injury, or PDO.  For multi-vehicle CMCs, both types of severity models developed are statistically 

significant, and the assumption of ordinal response was appropriate.  It was found road condition has a 

significant effect on the severity.  Adverse road surfaces enhance the likelihood of being involved in a more 
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severe consequence if a CMC occurs.  Past studies on multi-vehicle CMCs were based on data collected within 

geographical zones where the winter precipitation is not as adverse as Wisconsin.  Weather and road condition 

are causally associated with each other.  Snow or ice in Wisconsin impacts the severity of CMCs, and logically 

the geographical location plays a significant role.  Although ORL and ORP models found the posted speed 

limit significant, they revealed different features in severity propensity of CMCs.  Therefore, the interpretation 

of this factor should be treated in a cautionary way.  This also implies it is very necessary for safety researchers 

to use different models in analysis when pursuing more comprehensive understandings of a study topic. 

Final ORP model for single-vehicle CMCs reveals that alcohol/drug use, curved alignment, and 

unfriendly roadway visibility exacerbate the severity tendency if a CMC occurs.  An interesting finding is a 

dry roadway surface incurs a more severe consequence, which implies single-vehicle CMCs are more related 

to high speeds besides other significant factors.  However, ORL models fitted to single-vehicle data are 

statistically inappropriate since the proportional odds assumption was rejected; while other approaches (e.g., 

MNL, MNP, decision tree, etc.) can be applied in future research.  In historical median-related research, no 

significant correlation was found between traffic volumes and the encroachment rate (15), while crash rate and 

severity were found lower with wide medians and traffic volumes limitedly influenced the crash occurrence 

(10).  In this study, both the median width and the ADT were found to be insignificant factors for the severity 

propensity in both multi-vehicle and single-vehicle CMCs.   

The severity analysis is informative for state transportation agencies to assess median design policies 

and take safety enhancement measures against CMCs, such as the guardrail installation at curved segments or 

the improved public education of drivers with regard to the potential hazard of driving in snowy weather, 

during times with adverse visibility, under the influence of alcohol or drugs, and maintaining a high speed 

given good road condition.   
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